Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Med Virol ; 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2233285

ABSTRACT

The present study aimed to determine whether current commercial immunoassays are adequate for detecting anti-Omicron antibodies. We analyzed the anti-SARS-CoV-2 antibody response of 23 unvaccinated individuals 1-2 months after an Omicron infection. All blood samples were tested with a live virus neutralization assay using a clinical Omicron BA.1 strain and four commercial SARS-CoV-2 immunoassays. We assessed three anti-Spike immunoassays (SARS-CoV-2 IgG II Quant [Abbott S], Wantaï anti-SARS-CoV-2 antibody ELISA [Wantaï], Elecsys Anti-SARS-CoV-2 S assay [Roche]) and one anti-Nucleocapsid immunoassay (Abbott SARS-CoV-2 IgG assay [Abbott N]). Omicron neutralizing antibodies were detected in all samples with the live virus neutralization assay. The detection rate of the Abbott S, Wantai, Roche, and Abbott N immunoassays were 65.2%, 69.6%, 86.9%, and 91.3%, respectively. The sensitivities of Abbott S and Wantai immunoassays were significantly lower than that of the live virus neutralization assay (p = 0.004, p = 0.009; Fisher's exact test). Antibody concentrations obtained with anti-S immunoassays were correlated with Omicron neutralizing antibody concentrations. These data provide clinical evidence of the loss of performance of some commercial immunoassays to detect antibodies elicited by Omicron infections. It highlights the need to optimize these assays by adapting antigens to the circulating SARS-CoV-2 strains.

2.
Vaccines (Basel) ; 10(9)2022 Sep 17.
Article in English | MEDLINE | ID: covidwho-2044020

ABSTRACT

The emergence of the SARS-CoV-2 variants of concern has greatly influenced the immune correlates of protection, and there are little data about the antibody threshold concentrations to protect against infection with SARS-CoV-2 Omicron BA.1 or BA.2. We analyzed the antibody responses of 259 vaccinated healthcare workers, some of whom had been previously infected by SARS-CoV-2. The median follow-up was 179 days (IQR: 171-182) after blood collection. We detected 88 SARS-CoV-2 Omicron infections during the follow-up period, 55 (62.5%) with SARS-CoV-2 BA.1, and 33 (37.5%) with SARS-CoV-2 BA.2. A neutralizing antibody titer below 8 provided no protection against a BA.1 infection, a titer of 16 or 32 gave 73.2% protection, and a titer of 64 or 128 provided 78.4% protection. Conversely, the BA.2 infection rate did not vary as a function of anti-BA.2 neutralizing antibody titers. Binding antibody concentrations below 6000 BAU/mL provided no protection against Omicron BA.1 infection, 6000-20,000 BAU/mL provided 55.6% protection, and 20,000 or more provided 87.7% protection. There was no difference in BA.2 infection depending on the binding antibody concentration. Further studies are needed to investigate the relationship between antibody concentrations and infection with the Omicron BA.4/5 variants that are becoming predominant worldwide.

4.
Microbiol Spectr ; 10(4): e0270621, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1938019

ABSTRACT

The neutralizing antibody response is a key component of adaptive immunity and a primary protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The increased transmissibility of the SARS-CoV-2 Delta variant and its capacity to cause more severe disease could be linked to a significant reduction in neutralizing antibodies generated during a previous infection or vaccination. We analyzed blood samples from 162 unvaccinated health care workers (HCWs) collected 1 to 3 months postinfection and from 263 vaccinated health care workers 1 month after the last injection. We have compared the neutralizing antibody titers obtained using two virus strains, B.1.160 and B.1.617.2 (Delta variant). Binding antibody concentrations were measured by an immunoassay. The median neutralizing antibody titer against the B.1.160 strain was 128 (interquartile range [IQR], 16 to 256) and 32 (IQR, 8 to 128) against the Delta variant. To obtain a neutralizing antibody titer of 32 or 64, a binding antibody concentration of 182 binding antibody units (BAU)/mL (IQR, 81 to 974) was required with the strain B.1.160, while a concentration of 2,595 BAU/mL (IQR, 1,176 to 5,353) was required with the Delta variant. Our data indicate that antibodies neutralize the SARS-CoV-2 Delta variant 4 times less efficiently than they neutralize an earlier strain. Half of the HCWs had decreased protection from 94% to 76.8% or less for the same total antibody concentration. But neutralization might be correlated with other immune responses. The contributions of other responses, such as those of the T cell and B cell systems, to protection require further investigation. IMPORTANCE Recent studies showed that the neutralizing antibody titer is an important contributor to protection against SARS-CoV-2. With the emergence of new variants, the question arises of maintaining the neutralizing capacities of vaccines and/or of a past infection. We had protective data associated with total antibody concentrations and neutralizing antibody titers for a B.1.160 strain. We showed that to maintain the same levels of protection and, therefore, the same levels of neutralizing antibodies, a total antibody concentration 8.5 times greater is required with the Delta strain. (This study has been registered at ClinicalTrials.gov under registration no. NCT04385108.).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
5.
J Stroke ; 24(2): 256-265, 2022 05.
Article in English | MEDLINE | ID: covidwho-1893262

ABSTRACT

BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.

10.
Viruses ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: covidwho-1674823

ABSTRACT

Studies comparing SARS-CoV-2 nasopharyngeal (NP) viral load (VL) according to virus variant and host vaccination status have yielded inconsistent results. We conducted a single center prospective study between July and September 2021 at the drive-through testing center of the Toulouse University Hospital. We compared the NP VL of 3775 patients infected by the Delta (n = 3637) and Alpha (n = 138) variants, respectively. Patient's symptoms and vaccination status (2619 unvaccinated, 636 one dose and 520 two doses) were recorded. SARS-CoV-2 RNA testing and variant screening were assessed by using Thermo Fisher® TaqPath™ COVID-19 and ID solutions® ID™ SARS-CoV-2/VOC evolution Pentaplex assays. Delta SARS-CoV-2 infections were associated with higher VL than Alpha (coef = 0.68; p ≤ 0.01) independently of patient's vaccination status, symptoms, age and sex. This difference was higher for patients diagnosed late after symptom onset (coef = 0.88; p = 0.01) than for those diagnosed early (coef = 0.43; p = 0.03). Infections in vaccinated patients were associated with lower VL (coef = -0.18; p ≤ 0.01) independently of virus variant, symptom, age and sex. Our results suggest that Delta infections could lead to higher VL and for a longer period compared to Alpha infections. By effectively reducing the NP VL, vaccination could allow for limiting viral spread, even with the Delta variant.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , RNA, Viral/genetics , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Viral Load/immunology , Viral Load/statistics & numerical data , Adult , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Hospitalization , Humans , Male , Nasopharynx/virology , Prospective Studies , SARS-CoV-2/genetics , Viral Load/methods , Young Adult
11.
Microbiol Spectr ; 9(3): e0137621, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1592250

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and caused a dramatic pandemic. Serological assays are used to check for immunization and assess herd immunity. We evaluated commercially available assays designed to quantify antibodies directed to the SARS-CoV-2 Spike (S) antigen, either total (Wantaï SARS-CoV-2 Ab ELISA) or IgG (SARS-CoV-2 IgG II Quant on Alinity, Abbott, and Liaison SARS-CoV-2 TrimericS IgG, Diasorin). The specificities of the Wantaï, Alinity, and Liaison assays were evaluated using 100 prepandemic sera and were 98, 99, and 97%, respectively. The sensitivities of all three were around 100% when tested on 35 samples taken 15 to 35 days postinfection. They were less sensitive for 150 sera from late infections (>180 days). Using the first WHO international standard (NIBSC), we showed that the Wantai results were concordant with the NIBSC values, while Liaison and Alinity showed a proportional bias of 1.3 and 7, respectively. The results of the 3 immunoassays were significantly globally pairwise correlated and for late infection sera (P < 0.001). They were correlated for recent infection sera measured with Alinity and Liaison (P < 0.001). However, the Wantai results of recent infections were not correlated with those from Alinity or Liaison. All the immunoassay results were significantly correlated with the neutralizing antibody titers obtained using a live virus neutralization assay with the B1.160 SARS-CoV-2 strain. These assays will be useful once the protective anti-SARS-CoV-2 antibody titer has been determined. IMPORTANCE Standardization and correlation with virus neutralization assays are critical points to compare the performance of serological assays designed to quantify anti-SARS-CoV-2 antibodies in order to identify their optimal use. We have evaluated three serological immunoassays based on the virus spike antigen that detect anti-SARS-CoV-2 antibodies: a microplate assay and two chemiluminescent assays performed with Alinity (Abbott) and Liaison (Diasorin) analysers. We used an in-house live virus neutralization assay and the first WHO international standard to assess the comparison. This study could be useful to determine guidelines on the use of serological results to manage vaccination and treatment with convalescent plasma or monoclonal antibodies.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay/methods , Antibodies, Neutralizing/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunization , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Vaccination
12.
Diagn Microbiol Infect Dis ; 101(3): 115478, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1309208

ABSTRACT

Control of the rapid spread of the SARS-CoV-2 virus requires efficient testing. We collected paired nasopharyngeal swab (NPs) and saliva samples from 303 subjects (52.8% symptomatic) at a drive-through testing center; 18% of whom tested positive. The NPs, salivas and five saliva pools were tested for SARS-CoV-2 RNA using the Aptima™ assay and a laboratory-developed test (LDT) on the Panther-Fusion™ Hologic® platform. The saliva sensitivity was 80% (LDT) and 87.5% (Aptima™) whereas that of NPs was 96.4% in both assays. The pooled saliva sensitivity of 72.7% (LDT) and 75% (Aptima™) was not significantly different of that of individual saliva testing. Saliva specimens appear to be suitable for sensitive non-invasive assays to detect SARS-CoV-2 nucleic acid; pooling them for a single test will improve laboratory throughput.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , Nasopharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL